Digital Electric& Electronics System

Digital Intelligent Protective Relay

(Over Current Relay with Reclosing & Over Current Relay)

DIGITAL OVER CURRENT RELAY WITH RECLOSING

DIGITAL OVER CURRENT RELAY

DIGITAL RECLOSING RELAY

Feature

DIPR-K210 / K211 is a relay manufactured based on Korea Electric Power Corporation's purchase specification as a digital protection relay equipped with a function to protect three phase lines such as MAIN TR and 23KV D/L, unbalanced load on cable detection (UBOCR) and 50B (OLTC BLOCKING) functions and reclosing relay elements. This product is also equipped with disturbance recording, storing and analyzing functions to have enhance reliability.

Characteristics

• DIGITAL complete operational three phase over current, ground over current, unbalanced load OLTC blocking, reclosing relay

• Each necessary relay element can be separately enabled for selective use

• Output contact point maintaining time in a range of 0~200ms can be set up for each relay element

• Reliability has been secured through self-diagnostic functions and permanent monitoring function

• An interlocking mode is provided to enable setting any of 12 output contact points as necessary

% TRIP contact point (1a X 4 / 1b X 1), ALARM contact point (1aX7/1bX1 is fixed)

 Applied standard: over current relay purchase specification (ES 155 – 007)

- The reclosing function can be set ON/OFF and the number of times of reclosing can be freely designated up to three times
- The 50B function has been built-in so that the product can be used without separately configuring OLTC BLOCKING.
- Current sensing elements operate normally even under reclosing failure
- RS-232C and RS-485C communication methods are supported
 Draw Out Type case structure
- EMC and environmental resistance performances have been reinforced

Configuration

FRONT

The front panel was configured to enable easy identification of measuring and setting operation progresses by adopting 4X20 LCD considering H.M.I between the operator and the equipment. The front panel comprises 3–color LEDs for indicating individual faults and information, keypads and an RS–232C communication port for event and fault waveform analysis using the Manager program. Even during relay operation, the operation information can be identified using the keypads and RS–232C communication port and the relay element protection function will normally operate even in this case. Furthermore, a function can be set to allow only designated persons can change pick–up values by entering passwords.

LED (INDICATOR)

PWR green: power source RUN green: relay operation state

"ERROR_ red: self trouble

"OCR.OCGR, yellow: turned on at times of relay element operations

"INST_ red: turned on at times of instantaneous time trips

- "TIME_ red: turned on at times of definite time trips
- ^[46] yellow: turned on at times of current unbalanced operations

^r50B_J yellow: turned on at times of OLTC element operations

Keypad

"DISP. KEY	Information such as metering, setting, events, fault views can be identified.		
"SET』 KEY	Measurement elements' pick-up values and system set values can be changed. The setting function can be used after entering the password. The default value is [1111].		
"ENTER』 KEY	Menus can be selected or various pick-up values can be changed or identified.		
"RESET』 KEY	Fault information on the front panel can be reset without opening the front cover of the relay.		
『↑』 KEY	Press this to move to upper menus or increase set values.		
『↓』 KEY	Press this to move to remaining screens not indicated in the Menu or decrease set values.		
『← / →』 KEY	Press this to move cursor positions.		

Relay specification

• Information at times of line failures including fault time is stored in real time as 512 events can be stored

• A Fault Recording function is built in so that fault waveforms can be stored at times of faults (up to 12 waveforms)

 Instantaneous time and definite time, two time curves under Korea Electric Power Corporation purchase specification are built in (inverse time, very inverse time)

• Relay's pick-up values and LOGIC configuration are permanently stored regardless of whether the control power is supplied

Scope of application (AMBIENT CONDITION)

Ambient temperature: −10°C~ +55°C

• Relative humidity: Daily average 30% \sim 80%

• Altitude: 1,000m or lower

• Since the Manager program using the RS-232C communication port is used, pick-up value changes and event, fault waveform analyses are easy.

** Operation SOFTWARE: Device condition and relay elements can be set up,

EVENT and FAULT DATA inquiry SOFTWARE

※ Fault analysis SOFTWARE: Fault waveform analysis SOFTWARE
Diverse pieces of information on pick-up values and operation states are displayed through the LCD screen (4 X 20 LCD screen)

CASE

- Structure: square draw out type
- Color: Munsell No. N1.5 (black)
- Material: Steel and Aluminum

Ratings

Rated current	AC 5A
Rated frequency	60Hz
Rated input	110 \sim 220VAC / 110 \sim 220VDC
Permissible range of input	88 \sim 264VAC / 88 \sim 264VDC (\pm 20% of rated input)
Output voltage	+5V / +15V / -15V / +24V
Output current	2A / 0.5A / 0.5A / 1A
Output burden	50VA
	Rated current Rated frequency Rated input Permissible range of input Output voltage Output current Output burden

Instantaneous time short-circuit over current element (50)

	Pick-up value	10.0 \sim 80.0A (0.1A STEP)
Operation	Precision	Within $\pm 5\%$ of the pick-up value
	Time characteristics	Instantaneous time(40~50mS), definite time
		(0.04 \sim 10.00S / 0.01 STEP)
	Return value	At least 90% of the pick-up value
Return	Returning time	40mS or shorter
	Retardation time	20 \sim 200mS (0.01 STEP)

Definite time short-circuit over current element (51)

	Pick-up value	0.5 \sim 12.0A (0.1A STEP)
Operation	Precision	Within $\pm 5\%$ of the pick-up value
	Time characteristics	Inverse time
	T-lever	$0.1 \sim 10.0S (0.1 \text{ STEP})$
	Operating time precision	Within $\pm 5\%$ of time lever
Return	Return value	At least 90% of the pick-up value
	Returning time	100mS or shorter
	Retardation time	20 \sim 200mS (0.01 STEP)

Instantaneous time ground over current element (50N)

Operation	Pick-up value	5.0 \sim 40.0A (0.1A STEP)
	Precision	Within $\pm 5\%$ of the pick-up value
	Time characteristics	Instantaneous time(40~50mS), definite time
		(0.04 \sim 10.00S / 0.01 STEP)
	Return value	At least 90% of the pick-up value
Return	Returning time	40mS or shorter
	Retardation time	20 ~ 200mS (0.01 STEP)

Definite time ground over current element (51N)

	Pick-up value	0.1 \sim 4.0A (0.1A STEP)
Operation	Precision	Within $\pm 5\%$ of the pick-up value
	Time characteristics	Inverse time
	T–lever	0.1 ~ 10.0S (0.1 STEP)
	Operating time precision	Within $\pm 5\%$ of time lever
Return	Return value	At least 90% of the pick-up value
	Returning time	100mS or shorter
	Retardation time	20 ~ 200mS (0.01 STEP)

Load unbalance element (UBOCR)

	Pick-up value	0.1 \sim 4.0A (0.1A STEP)
Operation	Precision	Within $\pm 5\%$ of the pick-up value
	Time characteristics	Definite time
	Operating Time	0.1 ~ 10.0S (0.1 STEP)
	Operating time precision	Within $\pm 5\%$ of time lever
Return	Return value	At least 90% of the pick-up value
	Returning time	100mS or shorter
Retardation time		$20 \sim 200 {\rm mS}$ (0.01 STEP)

Load unbalance characteristics (46)

The load unbalance function is an alarm function to inform unbalance states of the load of the secondary side 23KV D/L of 154KV MAIN TR. Current unbalance sensing methods include zero-sequence current sensing methods that compare the waveform of the current flowing into the N phase CT of the relay with the fundamental waves and negative-sequence current sensing methods that operate the negative-sequence currents flowing into the A, B, C three phase CT to sense the current unbalance. The DIPR-210K relay uses a zero-sequence current sensing method to sense load unbalance.

This relay function has the same current pick-up value as the definite time ground over current element and its operating time characteristics are definite time characteristics ($0.1 \sim 10.0$ SEC).

OLTC BLOCKING element (50B)

	Pick-up value	5.0 \sim 80.0A (0.1A STEP)
Operation	Precision	Within $\pm 5\%$ of the pick-up value
	Time characteristics	Instantaneous time, definite time
	Operating Time	Instantaneous time (30mS), definite time
		$0.04 \sim 30.00S$ (0.01 STEP)
	Return value	At least 90% of the pick-up value
Return	Returning time	40mS or shorter
	Retardation time	20 \sim 200mS (0.01 STEP)

Reclosing element (79)

Number of time	s or reclosing	Can be selected among 1~3 times
Instantaneous time blocking		YES / NO can be selected
Dranara Tima	Operating time	$60 \sim$ 180S (1 STEP)
Prepare Time	Precision	Within $\pm 5\%$ of the pick-up value
Dooloim Timo	Operating time	60 \sim 180S (1 STEP)
Reciaint time	Precision	Within $\pm 5\%$ of the pick-up value
Input duration		0.1 ~ 2.0S (0.1 STEP)
Discrimination T	ïme	0.1 ~ 30.0 (0.1 STEP)
1 time realesing	Operating time	0.2 ~ 2.0S (0.1 STEP)
T UME TECTOSING	Precision	Within $\pm 5\%$ of the pick-up value
2 timos roclosina	Operating time	5.0 ~ 30.0S (0.1 STEP)
2 limes reclosing	Precision	Within $\pm 5\%$ of the pick-up value
2 timos realesing	Operating time	$30.0 \sim 60.0S (0.1 \text{ STEP})$
s limes reclosing	Precision	Within $\pm 5\%$ of the pick-up value
Fail Pulse Signal Time		1 \sim 600S (1 STEP)

OLTC BLOCKING characteristics (50B)

The OLTC BLOCKING function is a function to block OLTC (ON LOAD TAP CHANGER) when secondary side 23KV D/L of 154KV MAIN TR is in trouble to prevent burning due to the arcs generated in the process of transformer tap changing.

This relay function has current pick-up values of $5\sim 80A$ and its operating time characteristics are basically instantaneous time characteristics (≈ 30 ms).

In addition, by setting the definite time function, trip block signal transmission time can be changed in a range of 0.03 \sim 30.00SEC

Reclosing characteristics (79)

The reclosing operation element basically operates at three phases. This is equipped a function to block the secondary side OLTC (ON LOAD TAP CHANGER) of the MAIN TR. and this function may be turned off when necessary.

Even if the reclosing element fails, it will not at all affect the over current and ground over current elements and thus the relay will maintain normal operation. During reclosing operations, the number of times of reclosing is displayed on the screen of the relay during the RECLAIM TIME.

The number of times of reclosing can be counted up to 65535 times and the user can initialize the value into 0.

Protective operation characteristics

Current relay characteristics

The DIPR–K210 relay is equipped with a short–circuit over current protection element that senses short–circuit currents and over currents flowing through 3–phase lines and block the lines to protect the equipment and a ground over current protection element that senses ground fault currents and over currents flowing through ground lines and any of instantaneous time characteristics, definite time characteristics, inverse time characteristics and very inverse time characteristics can be selected and used.

The instantaneous time operation is maintained for around 30ms with a current input of 200% of the pick-up value and the operating time of definite time operation can be changed in a range of $0.03 \sim 10$ SEC at 0.01STEP with a current input of 120% of the pick-up value.

The operating time of inverse time characteristics and very inverse time characteristics is inverse proportional to the sizes of currents and thus as inflow currents increase the operating time decreases.

The operating time relational expression and definite time characteristics curves are as follows.

• t : operating time G : fault current Gb : current pick-up value tp : TIME LEVER

a : characteristics curve index(inverse time : 0.02 / very inverse time : 1.95)

• k : relay characteristics value (inverse time : 0.11 / very inverse time : 39.85)

• C : relay characteristics value (inverse time : 0.42 / very inverse time : 1.084)

Added functions

Permanent monitoring function (self diagnosis)

In order to maintain its functions normally and quickly respond troubles in built-in hardware, the relay is added with a self diagnostic function to permanently monitor operation states. When any trouble has been sensed, the **"ERROR_I LED** on the front side will be immediately turned on and the LCD window will display state messages. The contents of self-diagnosis will be recorded under the item EVENT.

Major diagnosis items and details of the permanent monitoring function

DC power failure	Cases where there is no DC input
monitoring	Cases where DC input is low voltage below 86V
	CPU / ROM / RAM operation failure
CPU and memory failure	CLOCK failure
mornioning	The signal line or control line has been cut
A/D converter failure monitoring	A/D CONTROL signal fault
	A/D control power dropped by more than 1V
DI / DO circuit failure monitoring	The control power was lost
	The signal line or control line has been cut
Pick-up value failure	The set pick-up value was abnormally changed
monitoring (set-up failure)	The set pick-up value is outside the setting limit.

EVENT function (EVENT RECORDING)

This is a function to record and check the history of changes in relay conditions beginning from the booting of the relay such as system variable changes, pick-up value changes and self-diagnosed conditions. Up to 512 events can be recorded and if the number of recorded events exceeds 512, the oldest record will be erased first to store new records. Records once stored are permanently maintained even when the control power is lost.

To identify stored events, press the "DISPLAY" KEY of the relay and move to "3. [EVENT]?". Then, press the "ENTER" KEY to enter the screen. You can identify the 512 data using the $[--] \times KEY$.

If the relay is connected to the PC using the RS-232C communication port on the front side to use DIPR-FAT, a communication operation PROGRAM provided by us, event data can be checked at a glance more conveniently.

Number of times of event recording	Up to 512 (first-in, first-out recording)
Operating time resolution	1ms
Display	EVENT TYPE
	Date and time of occurrence
	SYSTEM REBOOT
	SYSTEM fault EVENT
	– DI / DO CIRCUIT FAIL
	– MEMORY FAIL
	– AD CONVERTER FAIL
	– DC POWER FAIL
Event Type	- SETTING FAIL
	– SYSTEM OK
	RELAY PARAMETER RESET
	SYSTEM PARAMETER RESET
	Relay element EVENT
	D/I, D/O state change
	reclosing element SUCCESS / FAIL
	Data are permanently stored even if the control power is lost
Storage / Decode	Can be read using the communication operation program
	Stored as COMTRADE FILEs using the communication operation program

Added functions

FAULT function (FAULT RECORDING)

This is a function to record and store operation elements, magnitudes of currents, operating time, phase and harmonic waveforms, etc. when the fault trigger condition set on the relay to enable the user to grasp the cause of the fault quickly.

Up to 12 faults can be recorded and if the number of recorded events exceeds 12, the oldest record will be erased first to store new records. Records once stored are permanently maintained even when the control power is lost. To identify stored faults, press the "DISPLAY" KEY of the relay and press "??" KEY to move to "4. [FAULT VIEW] ?". You can identify the data using the " \leftarrow / \rightarrow " KEY.

Fault waveforms can be selected among three times (240CYCLE), six times (120CYCLE) and 12 times (60CYCLE) depending on the number of times of storage.

The fault position of waveform can be freely set in a range of 1 \sim 99% in accordance with site situations.

Communication function

The DIPR-K210 relay provides two generalpurpose communication methods having transmission speeds up to 115,200BPS.

The RS-232C communication on the front side is implemented as a function for direct interfaces with humans (H.M.I) and is used for local setting and data analysis after connection to the PC. The

RS-485C communication on the rear is used for SCADA communication.

	Up to 12 depending on setting (first-in, first-out recording)
Number of times of fault recording	• 12 / 1 sec. (12 X 60 CYCLE)
	• 6 / 2 sec. (6 X 120CYCLE)
	• 3 / 4 sec. (3 X 24CYCLE)
SAMPLING 36 SAMPLING / 1 CYCLE	
	FAULT date and time display.
	Fault types and occurred phase display by element .
	Fault current and operating time display.
	Display current values of other phases that the fault phase
vvavetorm storage	at the time point of fault occurrence.
display liems	Phase shift state and harmonic wave, VECTOR wave
	display.
	D/I , D/O state display
	Reclosing element's READY, START, FAIL states display
	Data are permanently stored even if the control power is lost
	Can be read using the communication operation program
STORAGE / DECODE	Stored as COMTRADE FILEs using the communication
	operation program

	Installed location	One port on the front side of the relay
	Use	Local Setting, Event and Fault waveform analysis
RS-232C	Transmission method	HALF - DUPLEX
	Communication speed	9,600 \sim 115,200BPS
	Communication line, common	RS-232C CROSS CABLE
	PROTOCOL	MODBUS PROTOCOL
	Installed location	One port on the rear of the relay
	Use	Distant SCADA control
RS-485C	Transmission method	HALF - DUPLEX
	Communication speed	$9,600 \sim 115,200$ BPS
	Communication line, common	RS-485C TWO-PAIR CABLE

Added functions

Metering function

	Fundamental wave current virtual values by phase are expressed				
A B C phase current	A phase current reference phase measuring				
(la / lb , lc)	Primary and secondary current values are simultaneously expressed through CT ratio setting				
	Input current (CT) guarantee range : AC 0 \sim 250A				
	Fundamental wave current virtual value expression				
N phase current (In)	Primary and secondary current values are simultaneously expressed through CT ratio setting				
	Input current (CT) guarantee range : AC 0 \sim 250A				
0	Steady state, negative-sequence, zero-sequence current sizes and phases are measured				
(lps / lns)	Primary current value is expressed by converting the input current into CT ratio				
	Input current (CT) guarantee range : AC 0 \sim 250A				
(DIGITAL INPUT)	The item being used among five D/I is expressed				
reclosing	Reclosing operation accumulation is expressed up to 65535				
Measuring precision	0.1CL				

Menu Tree DISPLAY MENU

Office (f	lu Es	20 4599 23	299					(1) (1) (1)	12	0964211	(Dash
그냥 장보	a na series e se	(9,400	Raule				
	K\$ 02 E	and the second second	_	Manager and		1000					
상태 보기		a 6	-	1.4	60.0	100	Constin Delecteri				
2012		free CLARK PE		((31)		111.42	fee:				
열립 보기	7 #014	Searc (T Rester		1003		15 812	Inc				
at the state	1 1213	Fick (* 10224		CORS		1543	fisi				
5 68		State (1 Esta Jac		COR:		15.425	fix				
= 20 + = -		Sar Falm	151	3000		t638	hsi				
a distant		ANETAR		COME		1545	[sw]				
1 H H H H		III Rder Try	(re)	Ra		19.407	[18]				
10.221						15.18	[ts]				
						155 #25	[12]				
Wa 28						1(6.53)	bst				
						15.41	[88]				
						1/5 #12	[08]				
		NO.00	-	1004510	1	10.25	and the second				
		4.5									
		Réco	[4]	S.J. Nak		2.ST O.K					
		58 F12k		FORS	[4]	9107.8.5	(201)				
		Tine	[88]	Haz		0.227/0.52	(42)				
		10000	-			FARE	982				
		1.5	-	1.1	194	111,040,114	(98)				
		St Total		I'mr	[2]	CONCETE THE	(82)				
		line .	10	lina	(m)	TELLAS: THE	(96)				
		Triend				II INC	(10)				
			_	DISC NO.		121316	(45)				
		DORUME		3.8		13.17%	(83)				
		3.6		Folid	H	14 DVE	[00]				
	_	860	[4]	Ins	[ex]						

	1.CURR	la, lb, lc, ln, lps, lns input values are display				
1.METER	2.D / I	The D/I being used is displayed				
	3.RECLOSE	Number of times of reclosing is displayed				
		1. 50 : OCR instantaneous time element set value identification				
		2. 51 : OCR definite time element set value identification				
	1.RLY_SET	3.50N: OCGR instantaneous time element set value identification				
		4. 51N : OCGR definite time element set value identification				
		5. UBOCR : UBOCR element set value identification				
		6. 50B : OLTC BLOCKING element set value identification				
		7. 79 : reclosing element set value identification				
2 <u>.</u> SET		[SELECT RELAYS]: individual relay element ENABLE state identification				
		[CT RATIO]:CT RATIO set value identification				
		[TIME SET]:RTC time set value c identification				
		[ADDRESS SET]:ADDRESS value for communication setting identification				
		[EVENT RESET]				
		[AUX RELAY TEST]				
	2.SYS_SET	[PASSWORD SET]				
		[FAULT RESET]				
		[LCD LIGHT TIME]:LCD BACKLIGHT time identification				
		[WAVE TRIGGER POSITION]:CAPTURE waveform point identification				
		[WAVE RECORD TIME]: fault waveform length identification				
		[RELAYOUT SELECT]: relay element designation for individual output contact points identification				
		[RECLOSE RESET]				
3.EVENT: Up to 512 events (use the left/right direction key to identify events)						
4.FAULT VIEW: up to 12 faults (use the left/right direction key to identify faults)						

SOFTWARE: DIPR-FAT (Fault Analysis Tool)

DIPR-FAT is total application software that provides environments that can be conveniently used using PC.

Relay system monitoring through the device reading function

If this software is connected to the relay using communication, situations and current measured values of each phase can be identified and relay element operation states, event data, fault data and self diagnosis states, etc can be monitored in real time.

Through the device writing function, relay system setting and individual relay elements' ON / OFF and set values can be changed and using the file storage function, each relay set value can be stored separately with separate names.

These stored values are usefully used when multiple relays are installed with the same condition. In this case, if device writing is done on newly installed relays using the file reading function, the relays can be immediately changed.

Using this software, relays' self-diagnosis states as well as various event data and fault data can be stored and COMTRADE FILE change and GRAPHIC screen analysis functions for fault waveform analysis are supported. The GRAPHIC screen analysis function analyzes 36 SAMPLING waveforms per cycle to provide RMS current values over time, vector values by phase shifts, $1 \sim 17$ harmonic wave analysis values related with harmonics, etc.

Device state view

Device state view items are divided into self monitoring, current measured value protection relay element operation, reclosing operation element, D/I contact point, D/O contact point items and the green lamp of each item indicates 'enabled'.

By pressing 'Read Device', the present state of the relay currently connected can be identified.

Fault analysis software: [FAULT-VIEWER]

The FAULT–VIEWER is GRAPHIC analysis SOFTWARE that is used in the fault waveform display and analysis functions included in the operation PROGRAM DIPR–FAT set forth in item 9. This GRAPHIC analysis SOFTWARE enables users to display and compare time waveforms, virtual value waveforms, vector diagrams and harmonics waveforms to enable intuitive fault cause analysis

The operation process of the FAULT-VIEWER is as follows.

- 1. Download the raw waveform stored in the relay through DIPR-FAT. DIPR-FAT stores the downloaded data in the COMTRADE file format.
- Drive the Fault–Viewer SOFTWARE to execute the stored file. The user may also select the downloaded file from DIPR–FAT and press VIEW.
- The user analyzes the data through the executed FAULT-VIEWER SOFTWARE. The user may also execute the FAULT-VIEWER independently to directly select and open the stored data.

Major characteristics of FAULT-VIEWER are as follows.

- Time waveform display
- Virtual value waveform display
- Vector waveform display
- Harmonics graph display
- Support Com-trade file format [Applied standard : IEEE C37.111 (1999)]
- Support two graph cursors (graph value [Y], time value [X], time difference display)
- Graph zoom—in/out function
- Support graph movement function
- Printing function

B135 105	001 T^	
Andreado Resettendo	ali a con e fer al 4 44 a la 1993 - Electro desa de la contro desa de la constituía de la const	
h Bascola Jane ola Fait		
Blow rote (Prz) Blow rote Parts Blow rote Stars rote		State State
attentitis (arts)		
<u>Leo</u>		
		Anna ann an Anna a
	ana 1997 1997 Ana Analia di kacimatan ing kacimatan ing kacimatan ing kacimatan ing kacimatan ing kacimatan ing kacimatan ing Ana Analia di kacimatan ing kacimat	
		N N

Rear

DI/DO contact point

Structure and terminal	TRIP (1) – a	1	14	TRIP (1) - a	A (IN)	27	40	A (IN)
arrangement on the rear	TRIP (2) – a	2	15	TRIP (2) - a	B (IN)	28	41	B (IN)
	TRIP (3) – a	3	16	TRIP (3) - a	C (IN)	29	42	C (IN)
	TRIP (4) – a	4	17	TRIP (4) - a	N (IN)	30	43	N (IN)
	TRIP (5) — b	5	18	TRIP (5) — b	DI (1)	31	44	DI (1)
	ALARM (1) - a	6	19	ALARM (1) - a	DI (2)	32	45	DI (2)
	ALARM (2) - a	7	20	ALARM (2) - a	DI (3)	33	46	DI (3)
	ALARM (3) - a	8	21	ALARM (3) - a	DI (4)	34	47	DI (4)
	ALARM (4) - a	9	22	ALARM (4) - a	DI (5)	35	48	DI (5)
	ALARM (5) - a	10	23	ALARM (5) - a		36	49	
	ALARM (6) - a	11	24	ALARM (6) - a	485 (+)	37	50	485 (-)
	ALARM (7) - a	12	25	ALARM (7) - a	AUX. POWER +	38	51	FG
	ALARM (8) – b	13	26	ALARM (8) – b	AUX. POWER -	39	52	FG

Input contact point	Input contact point Input condition Description of set condition					
DI (1) 31 44 DI (1)	52-b	DI (1) input: CB's 52 b contact point state checking				
DI (2) 32 45 DI (2)	63P	DI (2) input : CB's 63 P contact point GAS pressure state checking				
DI (3) 33 46 DI (3)	43RC	DI (3) input : switch for reclosing ON / OFF				
DI (4) 34 47 DI (4)	REMOTE	DI (4) input : remote reset switch for relay return				
DI (5) 35 48 DI (5)						
		DI (5) Input : Not used				
Output contact point	Output condition	n Description of set condition				
	OFF	Contact points are not used				
	SYS ERROR	Output System error				
	PROTO_OR	Output if even one of all relay elements operates				
	IOC_OR	Output if even one of over current instantaneous time elements operates				
	IOC_A	Output if over current instantaneous time element A phase operates				
	OC_B	Output if over current instantaneous time element B phase operates				
	IOC_C	Output if over current instantaneous time element C phase operates				
	TOC_OR	Output if even one of over current definite time elements operates				
TRIP (1) 1 14 TRIP (1)	TOC_A	Output if over current definite time element A phase operates				
TRIP (2) 2 15 TRIP (2)	TOC_B	Output if over current definite time element B phase operates				
TRIP (3) 3 16 TRIP (3)	TOC_C	Output if over current definite time element C phase operates				
TRIP (4) 4 17 TRIP (4)	IOCG	Output if ground over current instantaneous time element operates				
TRIP (5) 5 18 TRIP (5)	TOCG	Output if ground over current definite time element operates				
ALARM (6) 6 19 ALARM (6)	OC_A_OR	Output if A phase of even one of over current instantaneous time element and definite time element operates				
ALARM (7) 7 20 ALARM (7)	OC_B_OR	Output if B phase of even one of over current instantaneous time element and definite time element operates				
ALARM (8) 8 21 ALARM (8)	OC_C_OR	Output if C phase of even one of over current instantaneous time element and definite time element operates				
ALARM (9) 9 22 ALARM (9)	IOC+TOC	Output if even one of over current instantaneous time element and definite time element operates				
	IOC+IOCG	Output if even one of over current instantaneous time element and ground over current instantaneous time element operates				
	IOC+TOCG	Output if even one of over current instantaneous time element and ground over current definite time element operates				
ALARW (D) 11 24 ALARW (D)	TOC+IOCG	Output if even one of over current definite time element and ground over current instantaneous time element operates				
ALARM (C) 12 25 ALARM (C)	TOC+TOCG	Output if even one of over current definite time element and ground over current instantaneous time element operates				
ALARM (D) 13 26 ALARM (D)	IOCG+TOCG	Output if even one of over current definite time element and ground over current instantaneous time element operates				
	50B_0R	Output if even one of OLTC BLOCKING over current instantaneous time elements operates				
	50B_A	Output if OLTC BLOCKING over current instantaneous time element A phase operates				
	50B B	Output if OLTC BLOCKING over current instantaneous time element B phase operates				

Output if current unbalance element operates

Output if OLTC BLOCKING over current instantaneous time element C phase operates

Output when prepared for operation after reclosing element prepare time

Output during CB close pulse at every time of reclosing element operations

Output during the period from reclosing element starting to reclaim time

Output during fail pulse when reclosing element operation has failed

50B_C

UBOC

79_RDY

79_START

79_FAIL

OB_CLOSE

RECLOSING TIME CHART

For 23KV D/L protection (when DIPR-K211 is applied)

For 23KV D/L protection (when DIPR-K210 is applied) 52b,63P,43RC are reclosing element items and exist only in DIPR-K211. Do not connect.

For 154KV MAIN TR. protection (when DIPR-K210 is applied) 52b, 63P, 43RC are reclosing element items and exist only in DIPR-K211. Do not connect.

CB-a IN

RECLOSING TIME CHART

Time chart for CB input failure within D.T time after first time reclosing signals

ON OFF 43RC IN ON OFF 63P IN ON OFF 79 P.T Display ON OFF 50/51 IN ON СВ-Ь IN ON OFF 795 OUT ON OFF Inst' Blk IN ON OFF OUT OLTC_B ON OFF 75M.T/C.B CLOSE TEMET 79M OUT ON OFF L 79M.DT Timer ON OFF 79F OUT ON OFF RECLAIM Timer ON OFF READY LED Display ON OFF START LED Display ON OFF FAIL LED Display ON OFF

Time chart for second time reclosing failure

Time chart for the first and second time reclosing success

Protective cover

An IEC 60529 standard IP54 GRADE transparent cover was attached to block fine dust inflows and achieve waterproof while preventing front side damage due to user carelessness.

A reset switch was attached to enable LED returns without separating the cover.

Case

The structure of the case is designed as a square draw out type to facilitate separation from and connection to the electric circuit on the distributing panel for convenience in replacement or repair work

Dimension

